Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators

نویسندگان

چکیده

A field of endomorphisms R is called a Nijenhuis operator if its torsion vanishes. In this work we study specific kind singular points scalar type. We show that the tangent space at such possesses natural structure left-symmetric algebra (also known as pre-Lie or Vinberg-Kozul algebras). Following Weinstein's approach to linearization Poisson structures, state linearisation problem for operators and give an answer in terms non-degenerate algebras. particular, dimension 2, classification algebras smooth category and, with some small gaps, analytic one. These two cases, smooth, differ. also obtain complete two-dimensional real algebras, which may be interesting result on own.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Nijenhuis operators and dendriform trialgebras

We construct Nijenhuis operators from particular bialgebras called dendriform-Nijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, a kind of Baxter-Rota operators, and are therefore closely related to dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras, made out of nine operations and presentin...

متن کامل

A New Look at the Schouten-Nijenhuis, Frölicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

In this paper we re-express the Schouten-Nijenhuis, the Frölicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.

متن کامل

Algebraic Nijenhuis operators and Kronecker Poisson pencils

This paper is devoted to a method of constructing completely integrable systems based on the micro-local theory of bihamiltonian structures [GZ89, GZ91, Bol91, GZ93, GZ00, Pan00, Zak01]. The main tool are the so-called microKronecker bihamiltonian structures [Zak01], which will be called Kronecker in this paper for short (in [GZ00] the term Kronecker was used for the micro-Kronecker structures ...

متن کامل

Cosymmetries and Nijenhuis recursion operators for difference equations

In this paper we discuss the concept of cosymmetries and co–recursion operators for difference equations and present a co–recursion operator for the Viallet equation. We also discover a new type of factorisation for the recursion operators of difference equations. This factorisation enables us to give an elegant proof that the recursion operator given in arXiv:1004.5346 is indeed a recursion op...

متن کامل

Construction of Nijenhuis Operators and Dendriform Trialgebras 1

We construct Nijenhuis operators from particular bialgebras called dendriformNijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, kind of Baxter-Rota operators, and therefore closely related dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras made out with nine operations and presenting an exot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and Its Applications

سال: 2021

ISSN: ['1872-6984', '0926-2245']

DOI: https://doi.org/10.1016/j.difgeo.2020.101706